INTEGRATING CO₂-EOR AND CO₂ STORAGE IN OIL RESERVOIRS Prepared for: Regional Carbon Sequestration Partnerships Initiative Review Meeting 2006 Prepared by: Vello A. Kuuskraa (<u>vkuuskraa@adv-res.com</u>) Advanced Resources International, Inc. October 3-4, 2006 Pittsburgh, PA #### PRESENTATION OUTLINE - 1. DOE Basin Studies - 2. "Next Generation" CO₂-EOR - 3. Integrating CO₂-EOR and CO₂ Storage - 4. Summary ## 1. DOE BASIN STUDIES: CO₂-EOR AND CO₂ STORAGE - Cover 22 of the oil producing states plus offshore Louisiana (shelf), - Include 1,581 large (>50 MMBbls OOIP) oil reservoirs (two thirds of U.S. oil production), - Estimate oil recovery and CO₂ storage using streamline reservoir simulation, - Calculate economics using "industry standard" cash flow. These reports are available on the U.S. Department of Energy's web site at http://www.fe.doe.gov/programs/oilgas/eor/Ten_Basin-Oriented_CO2-EOR_Assessments.html # U.S. BASINS/REGIONS STUDIED FOR FUTURE OIL RECOVERY AND CO₂ SEQUESTRATION POTENTIAL FROM CO₂-EOR ### DOE BASIN STUDIES: MEETING THE **CONGRESSIONAL MANDATE** The Congressional Budget language for FY2004 and FY2005 directed that "basin-oriented" assessments be conducted to "examine new steps to accelerate adoption of carbon dioxidebased enhanced oil recovery". The Congressional Budget language for FY2006 added emphasis on "productively using industrial sources of CO₂." One DOE/FE step toward meeting this Congressional mandate has been to prepare a series of technical reports. #### DOMESTIC CO₂-EOR ACTIVITY - Currently, 82 CO₂-EOR projects provide 237,000 B/D of production - Affordable natural CO₂ launched CO₂-EOR activity in the 1980's - Federal tax credits (Sec.43) and state severance tax relief still encourage CO₂-EOR - New CO₂-EOR players: - OxyPermian (purchased Altura; adding new CO₂-EOR projects) - KinderMorgan (providing CO₂ pipelines/supply; purchasing oil fields amenable to CO₂-EOR) - Denbury (using Jackson Dome CO₂ for EOR in Mississippi and Louisiana) - Anadarko (using CO₂ from the LaBarge gas processing plant for EOR in the Rockies) #### GROWTH OF CO₂-EOR PRODUCTION IN THE U.S. Source: Oil and Gas Journal, 2002. ## **VOLUMES OF CO₂ INJECTED FOR EOR** | State/ Province | Source Type | CO ₂ Supply MMcfd | | | |---------------------------|---|------------------------------|----------------|--| | (storage location) | (location) | Geologic | Anthropogenic* | | | Texas-Utah-
New Mexico | Geologic (Colorado-New Mexico) Gas Processing (Texas) | 1,400 | 110 | | | Colorado-Wyoming | Gas Processing (Wyoming) | 0 | 240 | | | Mississippi | Geologic (Mississippi) | 100 | 0 | | | Michigan | Ammonia Plant (Michigan) | 0 | 2 | | | Oklahoma | Fertilizer Plant (Oklahoma) | 0 | 35 | | | Saskatchewan | Coal Gasification (North Dakota) | 0 | 145 | | | TOTAL | | 1,500 | 532 | | ^{*}Source: Advanced Resources International, 2004 # LARGE VOLUMES OF DOMESTIC OIL REMAIN "STRANDED" AFTER PRIMARY/SECONDARY OIL RECOVERY Original Oil In-Place: 582 B Barrels* "Stranded" Oil In-Place: 390 B Barrels* Advanced Resources International, Inc. ^{*}All domestic basins except the Appalachian Basin. Source: Advanced Resources Int'l. (2005) #### **BASIN STUDIES: TECHNICALLY RECOVERABLE** Nearly 89 billion barrels could become technically recoverable, providing a market for 20 billion metric tons of "EOR-Ready" CO₂. The economically recoverable portion depends on: (1) the "oil price" and market risk premium used for CO₂-EOR investment decisions; (2) significant demonstrations of "state-of-the-art" CO₂-EOR technologies to lower technical risk; and, (3) access to sufficient, low cost "EOR-Ready" CO₂ supplies. #### TECHNICALLY RECOVERABLE RESOURCES: "STATE-OF-THE-ART" CO₂-EOR (TEN BASINS/AREAS) | | DATABASE | | | | | | |------------------------|--------------------|------------------|---|----------------------|----------------------|-------------------------------| | | Large Reservoirs | | ALL RESERVOIRS | | | | | | | · | | OOIP* | ROIP** | Technically | | Basin/Area | # of
Reservoirs | % of
Resource | # Favorable
For CO ₂ -EOR | (Billion
Barrels) | (Billion
Barrels) | Recoverable (Billion Barrels) | | 1. Alaska | 34 | 97% | 32 | 67.3 | 45.0 | 12.4 | | 2. California | 172 | 90% | 88 | 83.3 | 57.3 | 5.2 | | 3. Gulf Coast | 239 | 60% | 158 | 44.4 | 27.5 | 6.9 | | 4. Mid-Continent | 222 | 59% | 97 | 89.6 | 65.6 | 11.8 | | 5. Illinois/Michigan | 154 | 61% | 72 | 17.8 | 11.5 | 1.5 | | 6. Permian | 207 | 74% | 182 | 95.4 | 61.7 | 20.8 | | 7. Rockies | 162 | 68% | 92 | 33.6 | 22.6 | 4.2 | | 8. Texas, East/Central | 199 | 65% | 161 | 109 | 73.6 | 17.3 | | 9. Williston | 93 | 72% | 54 | 13.2 | 9.4 | 2.7 | | 10. Louisiana Offshore | 99 | 80% | 99 | 28.1 | 15.7 | 5.9 | | Total | 1,581 | | 1,035 | 581.7 | 390.0 | 88.7 | ^{*}Original Oil in Place, in all reservoirs in basin/area; ** Remaining Oil in Place, in all reservoirs in basin/area. Source: Advanced Resources Int'l, 2006. 11 #### **BASIN STUDIES: ECONOMICALLY RECOVERABLE OIL** #### From 4 to 47 billion barrels of domestic resource could be economically added to domestic oil supply with CO₂-EOR technology. - "Traditionally practiced" CO2-EOR technology (small volumes of CO₂, high technical risks) would enable only a modest portion, 4 billion barrels, of this CO₂-EOR potential to be economic.¹ - "State-of-the-art" CO₂-EOR technology (larger volumes of CO₂, modified injection design) plus lower technical and economic risks would make 24 billion barrels economically viable.² - Availability of lower cost, "<u>EOR-Ready</u>" CO₂ supplies would increase the economically viable resource to nearly 47 billion barrels and accelerate the conversion of this resource to reserves and production.3 12 ^{1.} This case assumes an oil price of \$30 per barrel, a CO₂ cost of \$1.20 to \$1.50/Mcf, and a ROR hurdle rate of 25% (before tax). ^{2.} This case assumes an oil price of \$30 per barrel, a CO₂ cost of \$1.20 to \$1.50/Mcf, and a ROR hurdle rate of 15% (before tax). ^{3.} This case assumes an oil price of \$40 per barrel, a CO₂ cost of \$0.80/Mcf, and a ROR hurdle rate of 15% (before tax). # ECONOMICALLY RECOVERABLE RESOURCES FROM CO₂-EOR ## **BASIN STUDIES:** MARKET FOR PURCHASED CO₂ The current U.S. market for "EOR-Ready" CO₂ is on the order of 10 to 20 billion metric tons of CO₂. About 80% of this would become stored as part of CO₂-EOR. Currently known natural CO₂ sources hold only about 2 billion metric tons; CO₂-EOR offers a major market for industrial CO₂. | | Recoverable
Oil | Purchased CO ₂ | | Stored
CO ₂ | |---------------------------|--------------------|---------------------------|------------------|---------------------------| | | (Billion Barrels) | (Tcf) | (Billion Tonnes) | (Billion Tonnes) | | Technically Recoverable | 89 | 377 | 20 | 16 | | Economically Recoverable* | 47 | 188 | 10 | 8 | ^{* \$40} per bbl oil price, CO₂ cost of \$0.80/Mcf, ROR of 15% before tax. 14 ## BASIN STUDIES: MARKET FOR PURCHASED CO₂ (TEN BASINS/AREAS) | Basin/Area | Technically Recoverable (Billion Barrels) | Purchased CO ₂ (Tcf) | |--------------------------------|---|---------------------------------| | 1. Alaska | 12.4 | 51.4 | | 2. California | 5.2 | 23.9 | | 3. Gulf Coast | 6.9 | 33.3 | | 4. Mid-Continent | 11.8 | 36.3 | | 5. Illinois/Michigan | 1.5 | 5.7 | | 6. Permian | 20.8 | 95.1 | | 7. Rockies | 4.2 | 27.5 | | 8. Texas, East/Central | 17.3 | 62.0 | | 9. Williston | 2.7 | 10.8 | | 10. Louisiana Offshore (Shelf) | 5.9 | 31.0 | | Total | 88.7 | 377.1 | ### 2. "NEXT GENERATION" CO₂-EOR TECHNOLOGY Reservoir modeling and selected field tests show that high oil recovery efficiencies are possible using innovative applications of CO₂-EOR. Under ideal conditions, gravity-stable laboratory core floods have recovered essentially all of the residual oil. Using horizontal wells (and other process designs) that facilitate contact of the reservoir's pore volume with CO₂ would make high oil recovery efficiencies possible. So far, except for a handful of cases, the actual performance of CO₂-EOR in the field has been less than optimum, hampered by: - Geologically complex reservoir settings - Lack of "real time" performance information - Limited process control capacity #### LIMITATIONS OF PAST PERFORMANCE Because of high CO₂ costs and lack of information and process control, the great majority of past-CO₂ floods have used insufficient volumes of CO₂. Sweep Efficiency in Miscible Flooding Source: Claridge, E.L., "Prediction of Recovery in Unstable Miscible Displacement", SPE (April 1972). Injected CO₂ vs Oil Recovery Source: SPE 24928 (1992) 17 #### LIMITATIONS OF PAST PERFORMANCE In many of the previous CO_2 floods, the injected CO_2 achieved only limited contact with the reservoir: - Viscous fingering - Gravity override The figure shows how addition of viscosity enhancers could help improve reservoir contact. #### REVIEW OF PAST PERFORMANCE #### Relative Location of the Water Front A major barrier is the inability to target the injected CO_2 to reservoir strata with high residual oil saturation. The figures show: (1) the higher oil saturation and lower permeability portion of the reservoir is inefficiently swept; and (2) CO₂ channeling can be mitigated with well workover. The volumes of CO₂ purchased for (and stored by) CO₂-EOR in the ten "basin studies", assume: - The primary objective is enhancing economic oil recovery (minimizing costs while optimizing oil production). - No economic value or benefit is placed on "permanently" storing CO₂. - CO₂-EOR is applied as the tertiary (third) oil recovery option. As such, the above CO₂ requirements and storage volumes represent a minimum. The question is - - How and by how much could this minimum volume be expanded? <u>Expanding CO₂ Storage Capacity: A Case Study</u>. We use as the example a large Gulf Coast oil reservoir, with 340 million barrels (OOIP) in the main pay zone (above the producing oil-water contact). This reservoir holds another 100 million barrels (OIP) in the underlying 130 feet of transition/residual oil zone and has an underlying saline reservoir 195 feet thick (within the spill point). - Main Pay Zone: - Depth - 14,000 feet - Oil Gravity - 33°API - Porosity - 29% - Net Pay - 325 feet - Initial Pressure - 6,620 psi - Miscibility Pressure - 3,250 psi - Primary/Secondary Oil Recovery: 153 million barrels (45% of OOIP, in MPZ) This reservoir has 2,710 Bcf (143 million tonnes) of theoretical CO₂ storage capacity. **State-of-the-Art.** First, this Gulf Coast oil reservoir is produced using "state-of-the-art" CO₂-EOR project design - - vertical wells, 1 HCPV of CO₂ (purchased and recycled CO₂), and a 1:1 WAG. "Next Generation". Next, this Gulf Coast oil reservoir is produced using "next generation" CO₂-storage and CO₂-EOR project design. - Gravity-stable, vertical CO₂ injection with horizontal production wells. - Targeting the main pay zone, plus the transition/residual oil zone and the underlying saline reservoir. - Injecting continuous CO₂ (no water) and continuing to inject CO₂ after completion of oil recovery. - Instituting a rigorous diagnostic and monitoring effort. 22 With "next generation" CO₂ storage and EOR design, much more CO₂ can be stored and more oil becomes potentially recoverable. Importantly, the additional oil produced by "next generation" technology is "GREEN OIL". | | "State of the Art" | "Next Generation" | |----------------------------------|--------------------|-------------------| | | (millions) | (millions) | | CO ₂ Storage (tonnes) | 19 | 109 | | Storage Capacity Utilization | 13% | 76% | | Oil Recovery (barrels) | 64 | 180 | | % Carbon Neutral ("Green Oil") | 80% | 160% | However, considerable additional work is required to build this "next generation" technology and knowledge base for advanced CO₂-EOR and CO₂ storage. ## Weyburn Enhanced Oil Recovery Project (An Operating Project Maximizing Oil Recovery and CO₂ Storage) - Largest CO₂ EOR project in Canada: - OOIP 1.4 Bbbls - 155 Mbbls incremental - Outstanding EOR response - World's largest geological sequestration project - 2.4 MMt/year (current) - 7 MMt to date - 23 MMt with EOR - 55 MMt with EOR/sequestration ## "NEXT GENERATION" CO₂-EOR AND CO₂ STORAGE With advanced ("next generation") CO_2 -EOR and CO_2 storage technologies, oil formations would have enough capacity to store much of the captured CO_2 in the near- to mid-term. Regional considerations argue that all CO₂ storage options (oil & gas reservoirs, deep coal seams and saline formations) will be required. ## 1900 40.6250 1900 57.7500 1900 29.5000 1900 78.2500 1900 77.2500 #### **SUMMARY** Oil reservoirs have numerous attributes that make them attractive for storing CO₂ - - an established, secure trap; "value-added" products; and, existing infrastructure. With "next generation" technology, that integrates CO_2 storage and oil recovery, a much greater portion of the available CO_2 storage capacity in oil reservoirs will become useable. Plans are to provide a more sophisticated inclusion of this work in the updated version of NEMS, ready for AEO 2008. - Linkage to levels of R&D investment - Advanced technology levers - Integration with sources of CO₂. Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 USA Phone: (703) 528-8420 Houston, Texas 11490 Westheimer Road, Suite 520 Houston, TX 77077 Phone: (281) 558-9200 Fax: (281) 558 9202 Pittsburgh, Pennsylvania 401 Wood St. Suite 900 Pittsburgh PA 15222-1824 USA Phone: (412) 281-6568 Fax: (412) 281-6747